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Abstract An artificial neural network (ANN) technology is presented as an alternative to physical-based
modeling of subsurface water distribution from trickle emitters. Three options are explored to prepare input–
output functional relations from a database created using a numerical model (HYDRUS-2D). From the database
the feasibility and advantages of the three alternative options are evaluated: water-content at defined coordinates,
moment analysis describing the shape of the plume, and coordinates of individual water-content contours. The
best option is determined in a way by the application objectives, but results suggest that prediction using moment
analyses is probably the most versatile and robust and gives an adequate picture of the subsurface distribution. Of
the other two options, the direct determination of the individual water contours was subjectively judged to be more
successful than predicting the water content at given coordinates, at least in terms of describing the subsurface
distribution. The results can be used to estimate subsurface water distribution for essentially any soil properties,
initial conditions or flow rates for trickle sources.

Keywords Artificial neural networks · Drip irrigation · Spatial moments · Water flow

1 Introduction

Designs of drip irrigation systems involve selection of an optimal combination of emitter discharge rate and spacing
between emitters for a given set of soil, crop and climatic conditions, as well as understanding the wetted-zone
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pattern around the emitter [1,2]. Water distribution is affected by many factors including soil hydraulic characteris-
tics, initial conditions, emitter discharge rate, application frequency, evaporation, transpiration and the root-system
architecture.

Mathematical models can be used to increase the ability to predict water, fertilizer and salt movement and dis-
tribution in the soil [3]. In practice, the actual application of such models depends on the capability to perform this
analysis and optimization for relevant cases with reasonable effort. Both analytical and numerical models are used
to predict water distribution under drip irrigation [4–6]. While transient analytical models are generally restricted
to the Green–Ampt model [7] or to the use of Gardner’s [8] hydraulic conductivity function, numerical models are
more flexible and can implement practically any model for the soil hydraulic properties. Complex systems including
irregular boundaries and non-constant boundaries and initial conditions are also amenable to analysis. On the other
hand, computations with analytical models are much less tedious than numerical solutions and water distributions
can easily be computed independently for any time considered without running a full simulation. This is a strong
advantage when massive amounts of calculations are required such as for sensitivity analyses [9]. Another limitation
of numerical models is associated with the typical need to discretize time and space. Inappropriate discretization
can lead to bias in the solution. Although the learning procedures for the time discretization for adjusting the time
step of the numerical solution are widely used, the adaptive-grid procedures for the space discretization are rarely
used [10].

Artificial neural networks (ANN) are a robust pattern recognition technique that can be used for relating system
inputs and outputs when the physical relationships describing the system are very complex. ANN creates a map
between measured system inputs and outputs. Provided that the measured data adequately describe, sample, and
bound the system, the neural network will find a set of weights that map input to output data with minimum error.
ANN models are widely used for prediction of soil hydraulic properties [e.g., 11–14]. The assumption is that soil–
water retention and unsaturated hydraulic-conductivity curves can be determined from basic soil properties such as
texture, bulk density or clay content. Combined with a user-friendly interface like ROSETTA [15] or NEUROTHETA
[14] the ANN enable broad use of the hydraulic properties when the more tedious methods of direct measurement
is impractical or not critical.

Further applications of ANN in soil science are limited and mostly associated with prediction of water flow and
solute transport from laboratory, field or numerical experiments. Specifically, Schmitz et al. [16] proposed to use
ANN for solving water flow from a surface point source. They used a physically based numerical subsurface flow
model and ANN for solving the problem in two, fully separate steps. The first step utilizes the numerical model for
calculating a large number of wetting profiles from various boundary and initial conditions. The resulting database
of subsequent input/output values was used for training the ANN. In the second step, the fully trained ANN was
used to estimate the location of the wetting fronts. In another study, Jiusheng et al. [17] used laboratory experiments
to train the ANN in order to estimate nitrate concentration in the soil when the solution was applied from a surface
point source. They conclude that the trained ANN model was reasonably accurate and using ANN can overcome
the highly nonlinear complexity of the flow system.

Inspired by Schmitz et al. [16], we explore three different options to predict the water distribution in the sub-
surface. These represent different ways of approaching the problem of interest (the water distribution) and, at the
outset, it is not known which method will give the most adequate information or even whether reasonable results
can be attained. By developing the database using numerical models, the source of training data is limited only by
computation resources, but if we choose all the temporal and spatial data from several scenarios, the results quickly
form a huge database. Eventually, the database may be non-realistic when training an ANN. In order to develop our
primary objective of predicting water distribution in the subsurface for drip irrigation, it is necessary to examine
the alternative schemes, judge the effectiveness of each, and utilize databases of reasonable size. Concurrently, we
evaluate feasibility and advantages of these options. If successful, the results from the trained system can be used
to evaluate subsurface water patterns for any chosen soil, emitter flow rate or initial condition as a function of time
without further numerical analyses.
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Water distribution under trickle irrigation predicted using artificial neural networks 209

2 Materials and methods

2.1 Subsurface flow model

Numerical solutions of Richards’ [18] equation were implemented using the HYDRUS-2D code [19]. This code has
been previously used to successfully simulate water flow from drip irrigation systems [6,20]. Surface point sources
are considered resulting in three-dimensional axial-symmetry planes. The governing flow equation for three-dimen-
sional isothermal Darcian flow in a variably saturated isotropic rigid porous medium presented by the mixed form
of the Richards [18] equation:
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where θ is the volumetric water content [L3 L−3], ψ is the soil matric head [L], K is the hydraulic conductivity
[LT−1], r and z are spatial coordinates [L] in the radial and vertical directions, respectively (z positive downward)
and t is time [T]. In this study we are considering only the irrigation event, neglecting other processes occurring after
the water is added (e.g., redistribution, water uptake, evaporation). A specialized version of the HYDRUS-2D code, a
finite-element numerical code that solves the two-dimensional Richards equation, allows the spatial distribution of
the source discharge rate at the soil surface to change with time [21,22]. This is done by switching from a Neumann
(flux) to a Dirichlet (head) boundary condition if the surface pressure head required to accommodate the specified
flux for a surface node is larger than 0. A sufficient number of surface nodes are switched in an iterative way until
the entire irrigation flux is accounted for and the pond width is determined. Since the infiltration flux into the dry soil
is larger for early times, the pond width continuously increases as irrigation proceeds. Other initial and boundary
conditions for numerically solving [1] are

ψ(r, z, 0) = ψi , (2)
∂H

∂z
= ∂ (ψ + z)

∂z
= 0, r0 < r < R , z = 0 , (3)

ψ (r, z, t) = ψi , r2 + z2 → ∞, (4)

∂ψ

∂z
= 0, z = Z , (5)

where r0 is the ponded radius [L], H is the total head [L], ψi is the initial soil matric head [L] and R and Z are the
domain radius and depth [L], respectively.

The Mualem–van Genuchten soil hydraulic model [23,24] was selected for the numerical simulations:
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where Se is the effective fluid saturation [–], θr and θs denote the residual and saturated water contents [L3 L−3],
respectively, Ks the saturated hydraulic conductivity [L T−1] and α [L−1], n [–], and m [–] are empirical shape
parameters.

A flow domain was selected with R = 1 m and Z = 2 m. The flow domain was discretized into 1,123 nodes with
significantly greater detail around the source (automated discretization by HYDRUS-2D default mesh generation
parameters). Five homogenous soils with contrasting texture used in the simulations in order to have a representa-
tive matrix of variables that will allow comprehensive evaluation (The complexity of heterogeneous soil properties
is beyond the scope of this paper) .The hydraulic properties of these soils are taken from [25] and summarized
in Table 1. Five discharge rates, Q [L3 T−1] were used: 0.0005, 0.001, 0.002, 0.005 and 0.008 m3 h−1. Three
initial effective fluid saturations, Sei [–], were used: 0.01, 0.05 and 0.1. The total applied volume was 0.04 m3 in
all the simulations. Thus, simulated application duration varied between 80 h for Q = 0.0005 m3 h−1 and 5 h for

123



210 N. Lazarovitch et al.

Table 1 Hydraulic
properties for the 5
contrasting soils and the 4
test cases

Soil θr θs α (m−1) n Ks (m hr−1)

Sand 0.045 0.43 14.5 2.68 0.297
Loamy sand 0.057 0.41 12.4 2.28 0.146
Sandy loam 0.065 0.41 7.5 1.89 0.0442
Loam 0.078 0.43 3.6 1.56 0.0104
Silt loam 0.067 0.45 2.0 1.41 0.0045
Test Case 1 0.062 0.43 13.4 2.43 0.2
Test Case 2 0.062 0.43 10.7 2.13 0.1
Test Case 3 0.062 0.43 14.5 2.68 0.2
Test Case 4 0.062 0.43 10.6 2.13 0.2

Q = 0.008 m3 h−1. In all the simulations outputs were saved at 20 evenly spaced times. The result from all simu-
lations is a dataset of 1,684,500 (5 soils×5 discharge rates×3 initial conditions×1,123 nodes×20 print times)
vectors where each vector had eleven elements, θr , θs, α, n, Ks , Q, Sei, t , r , z, θ .

2.2 Data gathering

In this section we will explore alternatives for decreasing the size of the database to a meaningful and reasonable
size while remaining effective.

2.2.1 Method 1

This method consists of a coarse vector sampling from the total available vectors. The numbers of connection
weights in the ANN have to be balanced against the available data with a general guideline of 4–10 times more
training patterns than connection weights [26, p. 56]. Since we have 1,500 available water-content distribution snap-
shots (5 soils×5 discharge rates×3 initial conditions × 20 print times) we selected one to three random vectors
that contain 11 elements (θr , θs , α, n, Ks , Q, Sei, t , r , z, θ ) from each snapshot. As mentioned, the simulations were
conducted with a flow domain that has significantly greater detail around the source. To equalize the likelihood
of each vector to be selected, HYDRUS-2D results were regridded to 1×1 cm grid where the grid points assumed
to be that of the closest finite-element node using a separate program. The gridding procedure was accurate and
reproduced 99.99% of the mass. One to three grid nodes were randomly selected from each of the 1,500 available
snapshots. Care was taken that values were chosen only from locations that were greater than the initial value (with
threshold of 0.001 for the reduced water content). This procedure yielded datasets of 1,500, 3,000 and 4,500 vectors
with 11 elements including 10 inputs (θr , θs , α, n, Ks , Q, Sei, t , r , z) and one output (Se). The first 1,500 vectors are
referred as Dataset 1 in Table 2; the 3,000 vectors as Dataset 2 in Table 2; and the entire 4,500 vectors as Dataset
3, also in Table 2.

2.2.2 Method 2

The second method utilizes spatial moments to represent water dynamics under drip irrigation [22]. This method
allows a straightforward, physically meaningful description of the general pattern of water distribution around
the surface. As opposed to traditional methods that require detailed information of the water-content distribution,
moment analyses can accurately describe the water-content distribution in a statistical manner with just three num-
bers: the center of the added water (plume), zC , and the spread of the plume about its center in the z- and r -directions,
σz and σr . These three numbers define a spheroid about the center of the plume of added water. Any fraction of
water added can be related to a “probability” curve relating the size of the spheroids which contains that amount of
water.
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Water distribution under trickle irrigation predicted using artificial neural networks 211

Table 2 Fitting parameters
R2 and MSE

Method Prediction values R2 training R2 testing MSE

1 Dataset 1 0.9870 0.9858 0.0035
1 Dataset 2 0.9941 0.9894 0.0015
1 Dataset 3 0.9946 0.9922 0.0014
2 zC 1.0000 0.9999 0.0137
2 σr 0.9999 0.9999 0.0023
2 σz 0.9999 0.9999 0.0047
3 zmax, Sec = 0.15 0.9935 0.9945 0.568
3 r1, Sec = 0.15 0.9937 0.9943 0.2497
3 r2, Sec = 0.15 0.9930 0.9924 0.179
3 r3, Sec = 0.15 0.9929 0.9905 0.215
3 r4, Sec = 0.15 0.9604 0.9458 2.353
3 zmax, Sec = 0.5 0.9941 0.9917 1.611
3 r1, Sec = 0.5 0.9970 0.9974 0.372
3 r2, Sec = 0.5 0.9970 0.9972 0.317
3 r3, Sec = 0.5 0.9960 0.9962 0.346
3 r4, Sec = 0.5 0.9668 0.9640 2.499
3 zmax, Sec = 0.95 0.9954 0.9956 0.257
3 r1, Sec = 0.95 0.9988 0.9990 0.314
3 r2, Sec = 0.95 0.9988 0.9991 0.285
3 r3, Sec = 0.95 0.9987 0.9986 0.316
3 r4, Sec = 0.95 0.9678 0.9791 2.766

A separate program was used to compute the moments directly from the HYDRUS-2D output. For expediency,
an equally spaced grid was defined (1×1 cm) and values of water content in the grid points were assumed to be
that of the closest finite-element node. The moments were then computed using the gridded values. More details
for moment calculations can be found at [22]. This procedure yielded dataset of 1,500 vectors with 11 elements
including 8 inputs (θr , θs , α, n, Ks , Q, Sei, t) and 3 outputs (zC , σr , σz).

2.2.3 Method 3

The third method uses coordinates of water-content contours directly. A separate program is used to locate these
coordinates for each snapshot and contour of specific water content. First a contour of specific effective fluid sat-
uration, Sec, is selected and then the program finds the coordinates of the contour. The contours coordinates are
defined using five r - and z-locations [(0, zmax) (r1, 0) (r2, 0.15 zmax) (r3, 0.3 zmax) (r4, 0.9 zmax)]. The zmax is the
maximum depth of the effective fluid saturation contour and r1 − r4 are radial coordinates. The number of points
to describe a curve is a compromise between detail and practicality of inputs. This procedure yielded a dataset of
1,500 vectors with 13 elements including 8 inputs (θr , θs , α, n, Ks , Q, Sei, t) and 5 outputs (zmax, r1, r2, r3, r4) for
each Sec. In this work Sec was chosen to be 0.15, 0.5 or 0.9.

2.3 Neural network calculations

The nomenclature for artificial neural networks describes the architecture of the network in terms of the arrangement
and connection between computing nodes and layers and the learning algorithm used to calculate the connection
weights. We used one of the most common architectures, a multi-layer perceptron (MLP). The MLP consists of
an input layer with a node or processing element (PE) for each element of the input pattern vector. The input PEs
are connected to PEs in the next layer, the hidden layer, by weights that start with random values. Each PE in the
hidden layer computes a weighted sum of the input data and the connection weights and passes that sum through
an activation function. We used a hyperbolic tangent function for all of our networks. The output of the activation

123



212 N. Lazarovitch et al.

function becomes the input to the next layer which is either another hidden layer or the output layer and the compu-
tations previously described are again applied. Once the signal reaches the output layer, the ANN-calculated output
is compared to the desired output provided in the training set. Since the connection weights started with random
values, there will be an error in the network output. This error is usually computed as a mean-squared error. The
learning algorithm used determines how the connection weights are changed to compensate for the error. We used
one of the most common learning algorithms, backpropagation, and a more sophisticated algorithm called the quasi-
Newton method. Both algorithms were used in conjunction with each other. Backpropagation was used for the first
50 epochs of training (1 epoch = 1 complete pass through the training set) and then the quasi-Newton method was
applied using the weights from backpropagation as the initial weights. The backpropagation algorithm is described
in many publications including [26, p. 28] and will not be described in detail in this paper. The backpropagation
algorithm uses a gradient-descent technique to find a set of connection weights that will provide a minimum error
for all patterns in the training set. This algorithm is fast and often provides results that are good enough. Gradient
descent, however, can be slow to converge to a minimum and can often get stuck in local minima on the error surface.
More sophisticated methods to find a set of connection weights that will represent the global minimum of the error
surface are conjugate gradient, Newton’s method, quasi-Newton method, and Levenberg–Marquardt method.

The quasi-Newton method approximates the Hessian matrix rather than doing an exact calculation of the matrix
and its inverse. The quasi-Newton method converges to the global minimum quickly but does have large memory
requirements and sometimes cannot be used for large networks [26, p. 72], [27, p. 127], [28, p. 287].

The sizes of the input and output layers were fixed by the variables needed for each of the three methods we used
to compute water content. The hidden layer size was computed iteratively by STATISTICA ANN software [29]
to provide a minimum training error. For Method 1 we used two hidden layers each with 21 processing elements.
For Method 2 we used two hidden layers each with 20 processing elements. For Method 3 we used two hidden
layers each with 31 processing elements. The network architectures found to be optimal for each method are larger
than typically expected but are a function of the complexity of the problem. Each network began training with the
backpropagation algorithm for approximately 50 passes through the training set and then the quasi-Newton method
was applied for 200–300 passes through the training set. Three partitions of the dataset are used for training, testing,
and validation. 50% of the data are selected for training, 25% for validation, and 25% for testing. Testing is a
blind test at the end of training and these data are not used for any aspect of network training. The validation set
is used during training to determine if overtraining is taking place. The training process is stopped periodically
and the weights frozen. The validation data are applied to the network and the errors calculated. Since the error on
the training data will continue to decrease, we detect overtraining when the error on the validation data begins to
increase. At that point, training is stopped, the weights frozen, and the test data are applied in a blind test.

3 Results and discussion

Training of a neural network was completed for each of the 3 different datasets in Method 1. Predicted effective
fluid saturations, Se, with the trained ANN as a function of the numerical model results are presented in Fig. 1 for
Datasets 1 (1,500 points), 2 (3,000 points), and 3 (4,500 points). The R2 and MSE for all methods and datasets are
summarized in Table 2. Going from small to intermediate size of datasets for training increases the coefficient of
correlation for testing (R2) from 0.9858 to 0.9894. Increasing the size further for Dataset 3 made a smaller change
in comparison to Dataset 2 (R2 = 0.9921). Increasing the size of dataset decreased the mean squared error (MSE)
from 0.0035 in Dataset 1 to 0.0014 in Dataset 2. A further increase of input data to 4,500 points did not make a
great difference with respect to MSE (0.0014). The larger dataset concealed the extreme points (the points farthest
from the 1:1 line) that appear in Fig. 1a and bunched most of the points in Fig. 1b and c.

With respect to Method 2, ANN predictions as a function of the numerical model results for center of the added
water, zC is depicted in Fig. 2a. The spread of the plume about its center in the r - and z-directions, σr and σz are
presented in Fig. 2b and c, respectively. The ANN captured accurately the behavior with very small MSE and R2

near 1 and the points tightly on the 1:1 line.
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Fig. 1 Effective fluid saturation, Se, with the ANN as a func-
tion of the numerical model results for: a Dataset 1; b Dataset
2; and c Dataset 3
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Fig. 3 ANN prediction as a function of the numerical model results for: a the maximum depth of the water-content contour, θc = 0.15;
b the radial coordinate, r1, of the water-content contour; c the radial coordinate, r2, of the water-content contour; d the radial coordinate,
r3, of the water-content contour; and e The radial coordinate, r4, of the water-content contour

Finally, ANN predictions for Method 3 are plotted vs. the observed values for the effective fluid saturation con-
tour, Sec = 0.15 in Fig. 3. Figure 3a is for the maximum depth of the water-content contour, zmax, 3b for the radial
coordinate, r1, 3c for the radial coordinate, r2, 3d for the radial coordinate, r3 and 3e for the radial coordinate, r4.
The predicted values are reasonable as confirmed again by small MSE and R2 values near 1 as given in Table 2.
Values of r4 are predicted somewhat more poorly than r1as can be viewed in the scatter diagram (Fig. 3e) as well
as a smaller value R2 and a larger MSE. These tend to correspond to positions deeper in the soil profile and are
near the front of the added water. The statistics MSE and R2 are given for other relative water contents Sec = 0.5
and 0.95 are also included in Table 2 (but not as the scatter plots). These follow the same general trends as for
Sec = 0.15, with similar MSE and R2 values and with the poorest fits for r4.
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Fig. 4 Soil parameter n
from [6] as a function of Ks
for the four test cases
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Fig. 5 Comparison of water-content profiles for Test Case 1 between a HYDRUS-2D results; b the first ANN method with Dataset 1;
c the first ANN method with Dataset 2; and d the first ANN method with Dataset 3

After training was completed, testing data were obtained using 4 new simulations with different soil properties,
initial conditions and discharge rate than used for the training sets. This provided subsurface water distribution
to the end of 0.04 m3 application. The values of the soil hydraulic properties for the test cases are summarized in
Table 1. In all 4 test cases the discharge rate and the initial effective fluid saturation were 0.004 m3 h−1 and 0.05,
respectively. Soil parameter n from [6] as a function of Ks for the four test cases is showed in Fig. 4. The values of
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Fig. 6 Comparison of spheroids resulting moments calculations for all four test cases between HYDRUS-2D and ANN results from the
second method

n and Ks for the 5 contrasting soils of Table 2 tend to fall on a single curve as demonstrated in Fig. 4. Test Cases 1
and 2 were chosen along this same curve and Test Cases 3 and 4 were deliberately chosen off the curve as shown.

The observed water-content distribution of the numerical simulation for Test Case 1 is depicted in Fig. 5a. The
predicted water-content distributions for the three different nets that were trained using Datasets 1–3 are presented
in Fig. 5b–d, respectively. Immediately, we observe that the original and predicted values in the regions closest
to the source tend to be reasonably matched (that is by comparing the shaded regions of Fig. 5b–d to Fig. 5a).
However, further from the source the adequacy of the results is questionable, especially for Fig. 5b and d. A some-
what surprising result, is that the “best” results overall are clearly for the training Sets 2 (as shown in Fig. 5c). This
suggests that there is an optimum training set size and that over fitting can be undesirable in the case of the largest
training set which results in Fig. 5d.

Comparisons of spheroids resulting from moments calculations for all four test cases are shown in Fig. 6. The
“shading” is the HYDRUS-2D results for the water distribution, the solid curve is the observed ellipsoids and the
shaded curve the predicted values. The given ellipsoids denote 1 and 2 “standard deviations” based on kσr and kσz

with k equal to 1 for the inner ellipse or 2 for the outer. The inner contours define a region containing about 19% of
the added water; the outer contours define a region containing about 72% of the added water. Also shown are the
center of mass and the predicted center of mass. Although the general shape of the ellipsoids is captured in all four
test cases, Test Case 4 tends to show the poorest comparison.

Comparisons of water-content contours Sec = 0.15, 0.5 and 0.9 between HYDRUS-2D and ANN results from the
third method for all test cases is presented in Fig. 7. The overall contours are reasonable except for Test Case 2
which shows a crossing over the 0.5 and 0.9 curves at about the 60 cm depth. This is due to an inadequate estimate
for the zmax values. The general conclusion is that the results are best for Test Cases 1 and 4 and worse for Test
Cases 2 and 3.
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Fig. 7 Comparison of water-content contours, Sec = 0.15, 0.5 and 0.9, between HYDRUS-2D and ANN results from the third method

4 Conclusions

This work encapsulates numerical modeling of complex systems into an easy to use form. The results are, for the
most part, acceptable and allow the user to get an answer for any given time, soil hydraulic properties, initial and
boundary conditions without having to perform a detailed numerical simulation. But at the same time, the results
at times were disappointing, especially when the hydraulic properties tended to be dissimilar from those of the
training set.

Three methods for describing subsurface water distribution were defined and tested. Method 1 which relied on
predicting water contents for specified coordinates is probably the most obvious choice to use in terms of defining
subsurface water. However, it appears to be the most difficult of the three methods and was sensitive to the training
set used. Method 2 based on moment analyses is much less obvious, but appears to be the most robust of the three
methods. The results sought in this case are not the distribution of the water contents but a center of mass and
ellipsoidal contours which define where the added water resides in the profile. The ellipses (actually ellipsoids in
3-dimensions) shown correspond to approximate 19% and 72% of the added water, but others are possible using the
same moments. Method 3 predicts a specified number of points for specific water contours (we chose five points
for each contour). The results are best for the positions close to the source and tend to be more difficult to define in
the lower portions of the profile near the maximum depths for which the water contents change.

In the future, we expect to use the trained dataset to predict water contents for a trickle source in a user-friendly
environment by specifying only the input parameters with the results being computed essentially instantaneously
using a spreadsheet environment. However, the potential applications are much broader with one intriguing appli-
cation being to address the inverse problem of using measurements of moments based on a limited number of
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observations and calculating soil hydraulic properties. The procedure also appears viable for other irrigation sys-
tems such as from surface line sources, subsurface cavity sources and furrows.
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